
NASA-CR-190634

! .]7_ i.... ====-----=

Programmin-g in a Proposed
=_-_=-_9XDistributed A da

w

C_
L=I

O_

_0 • _oz

c_" c_" (.t_ I

o I

Q_ X_O
r_ O

t_ Oo_

O u_

-, =:r 0 ::D
0 _"

-._ _ Z
_ , ,..., tZ)

30_

o C Z

yn J I

0 U_
N _0

0 ---

REPORT 2

.,.

Raymond S. Waldrop

Richar_............d_A-Volz
Texas A&M University

Stephe_n J. Goldsack
A. A. Holzbach-Valero

Imperial College, London, England

May 1991

Cooperative A'°°---greementNCC 9-16

R_esearc._.Activity No. SE.35

NASA Johnson Space Center
Eng|n_ering Directorate

RightData Systems Division

U---/. D" _!- v

//5/0 ?___

/_, 3S"

Research Institute for Computing and Information Systems

University of Houston-Clear Lake

INTERIM REPORT

_f _ '--17- _ _ :: = _ :_ _ _ _"

I

m

The RICIS Concept

The University of Houston-Clear Lake establlshed the Research Institute for
Computingand Information Systems (RICIS) in 1986 to encourage the NASA
Johnson Space Center (JSC) and local industry to actively support research

in the computing and information sciences. As part of this endeavor, UHCL
proposed a partnership with JSC to Jointly define and manage an integrated

pmgrarn ofreseareh in advanced data processing technology needed for JSC's
main missions, including administrative, engineering and science responsi-

bilities. JSC agreed and entered into a continuing cooperaUve agreement
with UHCL beginning in May 1986, to Jointly plan and execute such research

through RICIS. Additionally, under Cooperative Agreement NCC 9-16,

computing and educaUonal facilities are shared by the two institutions to
conduct the research.

The UHCL/RICIS mission is to conduct, coordinate, and disseminate research

and professional level education in computing and inforrnaUon systems to
serve the needs of the government, industry, community and academia.
RICIS combines resources of UHCL and its gateway affiliates to research and

develop materials, prototypes and publications on topics of mutual interest

to its sponsors and researchers. Within UHCL, the mission Is being
implemented through interdisciplinary involvement of faculty and students
from each of the four schools: Business and Public Administration, Educa-

tion, Human Sciences and Humanities, and Natural and Applied Sciences.

RICIS also collaborates with industry in a companion program. This program

is focused on serving the research and advanced development needs of
industry.

Moreover, UHCL established rclauonshlps with other universities and re-

search organizations, having common research interests, to provide addi-
tional sources of expertise to conduct needed research. For example, UHCL

has entered into a special partnership with Texas A&M University to help
oversee RICIS research ant education programs, while other research
organizations are involved via the "gateway" coneepL

A major role of RICiS then Is to find the best match of sponsors, researchers

and research objectives to advance knowledge in the computing and informa-
tion sciences. RICIS, working Jointly with its sponsors, advises on research
needs, recommends principals for conducting the research, provides tech-
nical and administrative support to coordinate the research and integrates
technical results into the goals of UHCL, NASA/JSC and industry.

m

u

w

m

mm

W

RICIS Preface

This research was conducted under auspices of the Research Institute for Computing

and Information Systems by Raymond S. Waldrop and Richard A. Volz of Texas

A&M University and A. A. Holzbacher-Valero and Stephen J. Goldsack of Imperial

College, London, England. Dr. E.T. Dickerson served as RICIS research
coordinator.

Funding was provided by the Engineering Directorate, NASA/JSC through

Cooperative Agreement NCC 9-16 between the NASA Johnson Space Center and the

University of Houston-Clear Lake. The NASA research coordinator for this activity

was Terry D. Humphrey of the Systems Software Section, Flight Data Systems

Division, Engineering Directorate, NASA/JSC.

The views and conclusions contained in this report are those of the authors and

should not be interpreted as representative of the official policies, either express or

implied, of UHCL, RICIS, NASA or the United States Government.

w

--°

m

if

m_

= =

i

m

m

all i
!

i

if#

am

w

= =

v

PROGRAMMING IN A PROPOSED

9X DISTRIBUTED ADA

STATUS REPORT 2

by

Raymond S. Waldrop 1

Richard A. Volz 2

Stephen J.Goldsack3

A. A. Holzbacher-Valero4

1 Introduction

This is the second report from the joint project s of Texas A&M University and Imperial College to

study the proposed Ada 9X constructs for distribution, now referred to as AdaPT. The previous

report covered the selection of an example to be used as a basis for this study. The goals for

this time period were to revise the chosen example scenario and to begin studying about how the

proposed constructs might be implemented.

2 Scenario Specification

The example scenario chosen for this project is the Submarine Combat Information Center (CIC)

developed by IBM for the Navy. It is believed to be representative of the kinds of real-time

applications that can be found in NASA applications and was accepted by the NASA project

manager as the vehicle of study. The specification provided by IBM was preliminary and had

several deficiencies relative to our purposes. These deficiences included the following:

• the specifications of the actual operations performed by the time critical processing functions

were somewhat vague,

• some timing specifications were incomplete,

• some additional features which would further illustrate the capabilities of the AdaPT exten-
sions were needed.

1Texas A&M University
_Texas A&M University
aImperial College, London, England
_Imperial College, London, England
5This work is supported by NASA subcontract #074 Cooperative Agreement NCC-9-16.

To address these problems, we have made some changes to the scenario specification. Some of the

more important changes include:

• Addition of a system database management function. We felt that the amount of

interaction with the system database merited a separate function to oversee this interaction.

• Addition of a fourth processing unit to the standard resources. We felt that the

amount of interaction with the system database would require the resources of a separate

processing unit in order to provide timely service.

• Addition of an operator console interface function. We felt that, to be complete,

the scenario specification should give some idea about how the operator interacts with the

system.

• Removal of the Time Synchronization function. We felt that this function did not

offer any pertinent research issues and, in any event, since we will only be constructing a

simulation, the time synchronization issue is not that important.

Appendix A reflects these changes.

I

= =

t

i

3 Scenario Implementation Strategy

To implement the CIC scenario in AdaPT, we decided upon the following strategy:

e Publics would be created to provide all types needed for communication among the CIC

functions,

• Partitions would be used to implement all major CIC functions, and

• Nodes would be used to group the functions onto physical processors.

As part of this strategy, we decided that each dataflow presented in the specification would become

a parameter of a procedure call, a function call, or an entry call, and that examples of all three

would be used. Since the actual computational workings of the scenario were not of research

interest, only the structural specifications of the functions as implemented in AdaPT were seen as

necessary. Thus, the internal workings of the functions would be modeled by delays and loops to

simulate computation between communications. Finally, after the basic scenario implementation

is established, fault-tolerant features will be added.

While designing the implementation of the CIC scenario, we wanted to study all of the various

options that are available to a programmer working with AdaPT. For this reason we deliberately

selected an implementation which is not consistent throughout in the way these features are used.

In particular, we have studied various ways of using:

Q

I

m

m

L_

I

B

Conformant partitions. Conformant partitions were used in implementing the Weapon

Control function, but not in implementing the Sensor Control functions. The reasoning behind

this decision was that the Weapon Control function should provide a sufficient example of

the use of conformant partitions, and using conformant partitions for the two Sensor Control

functions would add unnecessary complexity to the implementation.

Remote procedure callsand remote entry calls.The AdaPT extensionsallowthe use

of both remote procedure calls(RPC's) and remote entry calls.The semanticsof the two

forms of remote callsare sufficientlydifferentto justifythe use of both forms withinour

implementation.

w

4 Status of implementation

The principle purpose for implementing the CIC scenario is to demonstrate how the AdaPT con-

structs interact with the program structure. Since our purpose is to examine the general structure

of the scenario implementation, it is not necessary to actually implement a working system which

could be put into service on a naval platform _d perform correctly. With this in mind, we plan

to implement the scenario only to the extent necessary to model such aspects as communication,

synchronization, configuration, and fault tolerance. All other aspects of program operation will be

replaced with dummy procedures. As mentioned previously, the general structure is adapted from

the IBM specification, as are the parameters for data transfer and transfer rates. The present state

of the implementation is as follows:

• The specifications for the partitions implementing the various CIC functions are complete, as

are the node specifications and the node bodies. The current version of these specifications

is included with this report.

• The bodies of the partitions are partially complete. When all bodies are complete, they will

be forwarded as a supplement to this report.

• Fault-tolerance aspects of the implementation will be dealt with once the bodies are complete.

Appendix B contains the specifications for the program.

5 AdaPT Issues

While considering ways that the AdaPT constructs might be translated to Ada 83, it was observed

that the partition construct could reasonably be modeled as an abstract data type. Although this

gives a useful method of modeling partitions, it does not at all address the configuration aspects

of the node construct. Another report, "Transforming AdaPT to Ada," that addresses these issues

is being readied and will be submitted shortly.

m

During the joint groupl and group2 conference held in Orlando, Florida, March 11-13 of this

year, the Ada 9X mapping team presented a proposed mapping for the new language. Dr. Volz

was present at that workshop, and our research teams have been considering the impact of the

proposed mapping on the AdaPT constructs.
W

m

I

J

m

m

I

g

4

w

g

|

E

u i
i
!

W

A Appendix A : CIC Specification

Several real-time system scenarios were developed for the Navy by IBM. The intent was to provide

specifications for systems which could be implemented by researchers studying real-time systems

and needing a realistic system for testing. This document adapts the IBM specification for a

submarine combat information center. The system is described as on a submarine but is typical of

command and control or surveillance systems on submarines, surface ships, land installations, or

the space station.

A.1 Combat Information Center Overview

The combat information center provides a focus for all collected tactical information and platform

status. The intent is to provide human operators with the information they will need to make

decisions. To this end, the information center includes a number of workstations for the use of

system operators. Each workstation can access and display any or all of the system data. This

information may include everything going on within hundreds of miles. All surface, air, and sub-

surface targets may be plotted against true geographical coordinates and topography. A full track

history is kept for each target. All displays axe kept current I. In addition to the workstations,

several computers are used as common computational resources for the system. These computers

axe used to prepare and coordinate system information for display by the workstations.

The amount of data collected, its format (text, audio, or video), and the number of active operators

determine the data processing load. Note that an "operator" could be a background processor

applying classification or correlation algorithms to the arriving reports.

w

A.2 CIC Physical Resources

The CIC may include up to twenty display workstations. All the workstations are retrieving data

from the main track file. The track file contains the current information on the position and identity

of all ships, aircraft, and submarines of interest to the CIC's own platform. Information within

the track file is updated many times a second 2. A single function called Track Update fields the

individual changes and prepares the track file for distribution to the workstations.

Each workstation combines the current track information with data from the system database for

display. Each display is either static or interactive. On a static display, the new reports are shown

on a fixed background. On an interactive display, an operator is actively pulling more information

from the system database as new tracks arrive. These are just two illustrative types of displays;

many others are possible.

1j. L. McClane, "The Ticonderoga Story, _ U. S. Naval Institute Proceeding, May 1985.
2David T. Marlowe, aRequirements for a High Performance Transport Protocol for Use on Naval Platforms,"

Report No. ANSI X3S3.3 HSP-8, July 23, 1989.

L .

w

W

J

mw

Weapons LAN

I
I One

Woa,oonControl

L

! I
Iw.-/lw.-ITwo Three

we_on conlmt2 wo_oonco_tro_3

Sensor LAN

Asym
Sew Com_

PoleaSemn,
Ccn_m_

_:_aionKeeOr,9

I]

Operator J Operator
Conso(e ,,. Console

One Twenty

C_o_'atot Cor6om Operator ConioJe

G
L
0
B
A
L

L
A
N

u

m

E_

m

m

W

m

m
J

Figure 1: CIC Processing Resources
m

W

w

w

u

-...._

w.

Figure 1 shows the nominal configuration of standard computer resources for this scenario. The

operators' display workstations are attached to the global LAN. The other systems are attached

to the standard processors by local networks. These local networks are attached to the standard

processors according to the manner in which the CIC functions are distributed among the stan-

dard processors. No redundant equipment is shown in the figure. In a real system the external

connections would be duplicated and any function that communicates with the other system would

be reconfigurable. These duplication and reconfiguration considerations are part of the system's

fault-tolerance capabilities, and will be instituted when fault-tolerance is added to the system.

A.3 Data Processing for the CIC

The critical processing functions of interest to our research include:

• Track Update,

• Overlay Management,

• Weapons Monitoring,

• Database Management,

• Operator Console,

• Weapon Control,

• Sensor Control, and

• Position Keeping.

The CIC System Database is controlled by the Database Management function. These modules

and the calls and dataflows among them are shown in Figure 2.

The processing and I/O requirements are specified in the following terms:

• Ns - the number of different sensor suites.

• Nc - the number of operators steering a cursor. Moving the cursor around the screen generates

a query for text information. The results appear in a pop-up window.

• Np - the number of operators paging. A page selection extracts an image from the database.

The operator examines the image and (based on what is found) selects another page.

• Rp - the rate an operator flips through pages.

The following sections describe the inputs, outputs, and processing of each of the major modules.

= =

w

m!l

__,__I { Se'nsor) "++r'+'"+:=_+°omo++"c:o"s

Solid lin_ _th arrm_ ,nOcCe direc_on of calls

Arrows Oy the names of the data flows too+care
• e o_rec_on of informaDonflow+

Ostmmfl_ mssocmled wi_ • i:_ticu_u ¢aJl mm
placed Io t_e top o_ Io t_e left of b"_eline

reDresenong the ,.-mjl+

m

mm

m

Q

W

m

m

w

w

lw

J

Figure2: CIC Interfaces I

m

m.

w

z ,

A.3.1 Track Update

The Track Update function (TU) manages the collection and distribution of data on targets of

interest.

Input

• Tracks - Track parameters from Asynchronous Sensor and Polled Sensor.

• Platform_Position - Location, velocity, and attitude vectors from Database Management.

• Sensor_ID - Identity of the Asynchronous Sensor which sent Tracks. Not needed for Polled

Sensor Control.

Processing

TU shall collect tracks from the different sensor suites, reconcile different sensors tracking the same

target, and apply these updates to the track file. TR shall distribute the updated track file on a

regular basis. The processing will require 50 • Ns KIPS

Timing Requirements

Tracks will be kept current enough to support the Overlay Management and Weapons Monitoring
functions.

Output

• Track_File - All current target tracks. These axe supplied to the Operator Console functions.

• Track_Updates - Current position of targets of interest. These are supplied to Database

Management

w

A.3.2 Polled Sensor Control

The Polled Sensor Control function (PSC) is responsible for the actual control of a sensor suite.
This function will reside on the embedded processor of the sensor suite it controls. This function

reports its information to the Track Update function only when the Track Update function requests
it.

Input

The only input to this function comes directly from the physical devices it controls, and is therefore

not of direct interest at this level of specification.

Processing

This function is responsible for taking the information in its raw form from the actual sensing

devices and converting it into a from usable by Track Update.

M

Timing Requirements

This function was not in the original IBM specification, so no values were given for the timing

requirements that must be met. Since our main concerns in this research are the structure, com-

munication, and configuration of the scenario, we will merely provide parameters to the module

implementing this function. These parameters can then be given values which result in appropriate

behavior of this subsystem.

Output

• Tracks - Track parameters from this sensor suite. Suppfied to Track Update.

A.3.3 Asynchronous Sensor Control

The Asynchronous Sensor Control function (ASC) is responsible for the actual controi of a sensor
Suite. This function will reside on the embedded processor of the sensor suite it controls. This

function periodically calls the Track Update function to report its results.

Input

The only input to this function comes directly from the physical devices it controls, and is therefore

not of direct interest at this level of specification.

Processing

This function is responsible for taking the information in its raw form from the actual sensing

devices and converting it into a from usable by Track Update.

Timing Requirements

This function was not in the original IBM specification, so no values were given for the timing

requirements that must be met. Since our main concerns in this research are the structure, com-

munication, and configuration of the scenario, we will merely provide parameters to the module

implementing this function. These parameters can then be given values which result in appropriate

behavior of this subsystem.

Output

• Tracks - Track parameters from this sensor suite. These are supplied to Track Update.

• Sensor_ID - Identity of the instance of this function. Sent with Tracks to Track Update so

that function will know where Tracks came from.

A.3.4 Overlay Management

The Overlay Management function (OM) extracts both geographic and intelligence data from the

system database for the displays.

10

w

m

u

m

m

w

Ril

W

w

I

Input Data

• Platform_Position - Location, velocity, and attitude vectors from Database Management.

• Text_Data - Information for a textual readouL Supplied by Database Management.

• Image_Data - Information for a page display. Supplied by Database Management.

Data Requests

• Page_Select - Operator's choice of new image. Supplied by Operator Console.

• Info_Select - Operator's choice of new textual readout. Supplied by Operator Console.

Processing

OM shall prepare, retrieve and format system data. Preparing a text readout will require 10 to

100 KI. Preparing a new page will require 20 to 40 KI.

Timing Requirements

Readouts shall be returned to the display within 0.1 seconds. Page images shall be returned within
0.5 seconds. New tracks shall be less than 3 seconds old.

Output

• Readout - Pop-up text for the track picked by the display cursor. Supplied to Operator

Console.

• Image - Pixel data formatted for display. Supplied to Operator Console.

• Data..Requests - Queries to the system database for data needed to fulfill requests by Operator
Console.

E

-,_._.

A.3.5 Database Management

The Database Management function (DM) is responsible for maintaining the CIC system database.

Although this function did not appear in the original IBM specification, we felt that the amo_mt

of traffic to and from the system database warranted a separate function to control access to that
data.

Input Data

* Platform_Position - Current position from the Position Keeping function.

• Track_Updates - Changes in track information from Track Update.

II

=

II

• Wpn_ttistory - Running commentary from Weapons Monitoring on weapon status.

Data Requests

• Data_Requests - Queries from Overlay Management for information.

• Target_ID - Identification of a target about which Weapons Monitoring needs more informa-

tion.

Processing and Timing Requ!_ments

This function was not in the original IBM specification, so no values were given for the amount

of processing required or the timing requirements that must be met. Since our main concerns in

this research are the structure, communication, and configuration of the scenario, we will merely

provide parameters to the module implementing this function. These parameters can then be given

values which result in appropriate behavior of this subsystem.

Output

• Platform.Position - The current position of the platform. Supplied to Track Update and

Overlay Management.

• Text_Data - Raw textual data for readouts. Supplied to Overlay Management for processing.

• Image_Data - Raw image data for display. Supplied to Overlay Management for processing.

• Targets - Current target positions and characteristics. Supplied to Weapons Monitoring.

A.3.6 Operator Console

The Operator Console function (OC) facilitates the operator's interaction with the rest of the

CIC system. To this end, it accepts information requests from the operator, passes on operator

commands, and coordinates the information being sent to the operator.

Input

• Track_File - All current target tracks from Track Update.

• Wpn..Display - Display of weapon status and tracks. Supplied by Weapons Monitoring.

• Readout - Pop-up text for the track picked by the display cursor. Supplied by Overlay

Management.

• Image - Pixel data formatted for display. Supplied by Overlay Management.

I

w

m

w

g

m

J

m
w

12

w

L

m

Processing

This function is responsible for merging information from Track Update, Weapons Monitoring, and

Overlay Management into a coherent form for presentation to an operator. It must provide the

operator with a means of requesting further information and issuing commands. Additionally, this

function must translate the operator's commands into requests that can be sent to the appropriate

CIC functions.

Timing Requirements

This function was not in the original IBM specification, so no values were given for the timing

requirements that must be met. Since our main concerns in this research are the structure, com-

munication, and configuration of the scenario, we will merely provide parameters to the module

implementing this function. These parameters can then be given values which result in appropriate

behavior of this subsystem.

Output

• Page.Select - Operator's choice of new image. Supplied to Overlay Management.

• Info_Select - Operator's choice of new textuaJ readout. Supplied to Overlay Management.

• Wpn_Select - Operator's choice of weapon configuration. Supplied to Weapons Monitoring.

• Operator_ID - Identity of the operator sending Wpn_Select information.

A.3.7 Weapons Monitoring

The Weapons Monitoring function (WM) provides the data and timing needed by the weapons.

Input

• Wpn_Select - Operator's choice of weapon Configuration. Supplied by Operator Console.

• Wpn_Status - Current state of each weapon as reported by Weapon Control.

• Targets - Current position of each target. Supplied by Database Management.

• Operator.ID - Identity of the operator sending Wpn_Select information.

Processing

WM shall pass configuration and aiming commandsto the active weapons as directed by the oper-

ator's choices. WM shall provide current track data on operator selected targets. WM shall report

the status of any active weapons to both the operators' workstations and the system database.

Timing Requirements

Updated tracks shall reach the weapons within 0.5 seconds of being reported by the sensors. Status

shall be displayed within 1.0 second of being reported by the weapons.

13

L .

Output

• Wpn_Display - Display of weapon status and tracks. Supplied to Operator Console.

• Wpn_Orders - Steering, Positioning, and configuration commands. Supplied to Weapon Con-
trol.

• Wpn_History - Current and projected state of each weapon. Sent to Database Mangement.

• Target_ID - Identification of a target about which more information is desired.

lij

m
m

A.3.8 Weapon Control

The Weapon Control function (WC) is responsible for the actual control of an individual weapon

system. This function will reside on the embedded processor of the weapon system to be controlled.

Input

• Wpn_Orders - Steering, positioning, and configuration commands from Weapons Monitoring.

w

m

w

Processing

The Weapon Control function is responsible for translating the operator's commands into the

control signals for the weapons systems. Additionally, this function must maintain a record of the

current status of the system, and provide this information to Weapons Monitoring.

Timing Requirements

This function was not in the original IBM specification, so no values were given for the timing

requirements that must be met. Since our main concerns in this research are the structure, com-

munication, and configuration of the scenario, we will merely provide parameters to the module

implementing this function. These parameters can then be given values which result in appropriate

behavior of this subsystem.

Output

• Wpn_Statns - Current status of this weapon system. Used by Weapons Monitoring.

• Wpn_Capabilities - Provides Weapons Monitoring with information about the capabilities of

this particular weapon.

w

=

w

m

w

m

w

14
W

m

A.3.9 Position Keeping

The Position Keeping function (PK) broadcasts the current location of the platform and hy-

drophones.

Input

• Fix - Navigational fix obtained from the gyro.

Processing

PK shall compute attitude vectors for the platform and weapons. The resulting position data shall

be sent to the database.

Timing Requirements Position information shall reach the weapons within 200 milliseconds of the

fix being taken.

Output

• Platform_Position - Location, velocity, and attitude vectors to be stored by Database Man-

agement.

A.4 Data Flows for CIC

Table A.4 shows the real time data flow rates and sizes. In addition, the system will have to support

occasional file transfers of up to 100 Megabytes in length.

= •

z

m.

15

_z

g

w

ID

Table 1: The data flows and their rates.
uw

Signal
Info_Select

Data_Request

Targets

Wpn_Orders

Wpn_Display

Image_Data
Text_Data

Wpn_History

Wpn_Status

Wpn_Select

Page_Select
Fix

GMT

Image
Platform_Position

Readout

Time
Track_File

Track.Updates
Tracks

Description
Choice of new textual readout data.

Queries from Overlay Management for data.

Current target position and characteristics.

Weapons settings and steering commands.

Current weapons status.

Image retrieved from the database.
Textual data retrieved from the database.

Running commentaxy on weapon status.

Current weapon state.

Weapon display choices.

Choice of new image.

Input from gyroscope.

Greenwich Mean Time from external clock.

Pixel data ready for display.

Latitude, longitude, pointing and velocity
vectors for the platform.

Text for cursor readout display.
Greenwich Mean Time.

The entire carrent track file.

Changes in the tracks from each sensor suite.

Updates to the tracks from each sensor suite.

Rate(Hz)
2*Nc

2*Nc+Rp*Np
0.5

1

>1

Rp* Np

2,Ne

0.1
1

A periodic

Rp * Np

16

1

Rp* Np

<16

2,Nc

TBD

0.5

Ns

Size(Bytes)
50

100

1K

32

64
1M

100

1K

32

50

50

24

24

1M

32

50

8

1M

1K

w

m

w

m

lib

W

W

W

16
g

w

w

T

L .

v

v

r_

L

m

B Appendix B : CIC Interface Specifications

-- CIC interfaces, version 2.4

-- 9-May-91

-- This document gives the interfaces for the various partitions implementing

-- the functions of the CIC scenario. The number of expected instantiations

-- of each partition is given. Also, for each task entry call, the expected

-- rendezvous frequency and the parameter siz _ are given according to the

-- information in the IBM specification in Table 2.

-- This document also gives node specs for the processing resources of the

-- CIC scenario. The corresponding node bodies are filled in to the extent

-- necessary to indicate the desired configuration behavior.

-- The following terms are used in specifying the frequencies of use of the

-- various entry calls:
-- Ns - the number of different sensor suites

-- Nc - the number of operators steering a cursor

-- Np - the number of operators paging

-- Rp - the reate an operator flips through pages

-- Changes since 2.4

-- • change Transfer_Initiating...Sensor_Control to Asynchronous_Sensor_Control.

-- Changes since 2.3

-- • Public Track_TypeDefs

-- • changed TRACK_ID_TYPE to private.

-- • Partition Database_Management

-- * changed Position Keeping.._int.Accept_Position to procedure

-- AcceptPosition.

-- * removed task Position Keepin$...int.

-- * changed Overlay_Management_int.Send Position to procedure

-- Send_Position. (This makes it more general; There should have been a

-- similar entry call in Track Update. int, but there was not. Now

-- there is no need.)

-- * changed Overlay_Management_int.Send_Text to procedure Send_Text.

-- • changed Overlay Management_int.Send_Image to procedure Send_Image.

-- • removed Overlay_Management int:

-- • renamed VocalSensorControl to Transfer_Initiating...Sensor_Control.

-- • switched names for CPU2 and CPU3 to bring them into conformance with

-- the Processing Resources diagram in the CIC specification document.

-- Changes since 2.2

-- • Partition Weapon_Control

-- • changed the procedure Send_Capabilities into the function
-- Weapon_Capabilities.

-- • changed the procedure Send_Status into the function Weapon_Status.

17

-- • changed the procedure Accept_Orders into the entry New_Orders of
-- a new task Commands.

-- * added an entry Priority_Orders for sending orders that would override

-- any orders currently being carried out (e.g. an "abort firing" order)

-- Changes since 2.1

-- • added pragma Distiguished to node CPU4.

-- * added the common frame types.

-- , added two conformant partition types derived from Weapon_Control.

-- , added a procedure to the WeaponControl partition so each instance can

-- be queried as to the capabilities of the weapon system it controls.

-- Changes since 2.0:

-- • Add publics containing all mentioned types. Meaningful type definitions

-- will come later (perhaps as the simulator is built).

-- • Changed the name of the Configuration_Interface tasks to CFI. This

-- change was made to reduce the problems with name length.

-- Changes since 1.2:

-- • Operator_Console partition was changed so that it actively calls other

-- partitions for needed data, e.g. it calls the Track_Update partition for

-- the track file as needed. This eliminates problems with the other

-- partitions, e.g. Track_Update, having to keep track of all active

-- Operator Console partitions.

-- , Changed the WeaponControl partition so that the Accept_Orders entry is

-- replaced by a procedure call. This included the elimination of a visible

-- Weapons_Monitoring interface task inside this partition.

-- , Removed PositionKeeping interface task from TrackUpdates partition

-- because Track Updates is supposed to get the position from the CIC database

-- • Renamed the Sensor_Control partition as Polled_Sensor_Control

-- • Added a Vocal_Sensor Control partition to allow for sensors which

-- automatically report their data to the Track_Updates function.

-- • Added configuration code, including partition Configuration_Interface
-- tasks and nodes.

m

J

J

IIU

m

m

m
w

w

imF

m

w

I

W

J

package FRAME_TYPEDEFS is

type FRAME_32 is array(1..8) of INTEGER;

type FRAME_64 is array(1..2) of FRAME_32;

type FRAME_1024 is array(1..32) of FRAME_32;

type FRAME_IM is array(1..32768) of FRAME 32;

type FRAME_50 is
record

FIELD1 : array(1..12) of INTEGER;

FIELD2 : array(1..2) of BYTE;

end record;

type FRAME_100 is array(1..2) of FRAME_50;

end FRAME_TYPEDEFS;

W

w

18

w

-- Note: all type definitions are assuming 32-bit integers.

with FRAME_TYPEDEFS;

public POSITION TYPEDEFS is

-- 32 bytes

type POSITIONTYPE is FRAME TYPEDEFS.FRAME 32;

end POSITION_TYPEDEFS;

m

with FRAME_TYPEDEFS;

public WEAPON_TYPEDEFS is

-- Size: 32 bytes

-- Variables:Wpn_Orders

type ORDERS_TYPE is FRAME_TYPEDEFS.FRAME_32;

-- Size: 32 bytes

-- Variables:Wpn_Status

type WPN_STATUS_TYPE is FRAME_TYPEDEFS.FRAME_32;

-- Size: 32 bytes

-- Variables: Wpn_Select

type WPN SELECT_TYPE is FRAME_TYPEDEFS.FRAME_32;

-- Size: 64 bytes

-- Variables: Wpn_Display

type WPN INFO_TYPE is FRAME TYPEDEFS.FRAME_64;

-- Size: 100 bytes (again, just _ shot in the dark)

-- Variables: Weapon Capabilities

type WPN CAP_TABLE is FRAME_TYPEDEFS.FRAME_100;

-- Size: 1K

-- Variables: Wpn_History

type WPN HIST_TYPE is FRAME TYPEDEFS.FRAME 1024;
-- Size: 1K

-- Variables: Targets

type TARGETSTYPE is FRAME TYPEDEFS.FRAME_1024;

end WEAPON_TYPEDEFS;

with FRAME_TYPEDEFS;

public TRACK_TYPEDEFS is

-- Size: 32 bytes

-- This seems to be their most-used size, so it seems

-- reasonable to use it and assume it contains additional

-- information about the sensor (besides a simple number).

-- Variables: Sensor_ID

type SENSOR ID TYPE is private;

19

W

-- Size: 32 bytes (See above.)

-- Variables: Target_ID

type TRACK_ID_TYPE is private;
-- Size: 1K

-- Variables: Track_Updates

type TRACK INFO_TYPE is FRAME_TYPEDEPS.FRAME_1024;
-- Size: 1K

-- This size not provided in specs, so Track_Updates is used

-- as a guide.
-- Variables: Tracks

type TRACKS_TYPE is FRAME TYPEDEFS.FRAME_1024;
-- Size: 1M

-- Variables: Track_File

type TRACK_FILE_TYPE is FRAME_TYPEDEFS.FRAME_IM;

function NEXT_ID(OLD_ID : SENSOR ID TYPE) return SENSOR ID TYPE;

private
type SENSOR ID_TYPE is FRAME_TYPEDEFS.FRAME 32;

type TRACK ID TYPE is FIZAME TYPEDEFS.FRAME_32;

end TRACK_TYPEDEFS;

public body TRACK_TYPEDEFS is

function NEXT_ID(OLD_ID : SENSOR ID TYPE) return SENSOR ID TYPE is

begin
-- code to compute the next ID given the current ID

end NEXT ID;
end TRACK_TYPEDEFS;

m

J

J

mm

m
g

W

w

W

m
u

W

with FRAME_TYPEDEFS;

public OVERLAY_TYPEDEFS is
-- Size: 100 bytes

-- Variables: DataRequest --: ::

type REQUESTTYPE is FRAME TYPEDEFS.FRAME 100;

-- Size: 50 bytes

-- Variables: Page Select
type PAGE_ID_TYPE is FRAME TYPEDEFS.FRAME 50;

-- Size: 50 bytes

-- Variables: Info_Select

type READOUT ID TYPE is FRAME_TYPEDEFS.FRAME_50;
-- Size: 100 bytes

-- Variables: TextData

type RAWTEXT_TYPE is FRAME TYPEDEFS.FRAME 100;

-- Size: 50 bytes

m
w

m

IP

2O

w

-- Variables: Readout

type READOUTTYPE is FRAME_TYPEDEFS.FRAME 50;
-- Size: 1M

-- Variables: Image_Data

type RAW_IMAGETYPE is FRAME_TYPEDEFS.FRAME 1M;
-- Size: IM

-- Variables: Image

type IMAGE_TYPE is FRAME_TYPEDEFS.FRAME_IM;
end OVERLAY_TYPEDEFS;

w

with FRAME_TYPEDEFS;

public OPERATOR TYPEDEFS is

-- Size:32 bytes (Same arguments as for Sensor ID Type.)

-- Variables:Operator_ID

type OPERATOR_ID TYPE is private;

function NEXT_ID(OLD ID : OPERATOR ID TYPE) return OPERATOR ID_TYPE;

private

type OPERATOR ID TYPE is FRAME_TYPEDEFS.FRAME 32;

end OPERATOR TYPEDEFS;

public body OPERATOR TYPEDEFS is

function NEXT ID(OLD_ID : OPERATOR ID TYPE) return OPERATOR_ID_TYPE is

begin

-- code to returnnext ID given the currentID

end NEXT_ID;

end OPERATOR TYPEDEFS;

L .

-- This partition implements the Database Management function DM.
-- This function was not in the original IBM spec, but we felt that it was

-- reasonable to include such a function given the amount of interaction

-- with the system database.

-- There will be one instantiation of this partition.
with POSITION TYPEDEFS, WEAPON_TYPEDEFS, TRACK_TYPEDEFS, OVERLAY TYPEDEFS;

use POSITION_TYPEDEFS, WEAPON_TYPEDEFS, TRACK_TYPEDEFS, OVERLAY TYPEDEFS;

partition DATABASE_MANAGEMENT is
-- Each function that must call the DATABASEMANAGEMENT partition is

-- served by a separate interface task. Depending on the implementation,

-- this may yield more predictable behavior than procedure and

-.- function calls because using tasks explicitly specifies a

-- separate thread of control, whereas procedures and functions

-- implicitly create separate threads when they are called

21

J

-- by remote entities. (The RPC mechanism may or may not have to create

-- a new thread from scratch, while a task should aready be in

-- existence. The task therefore seems to offer a greater chance of

-- predictable behavior.)

-- This procedure allows the current position of the platform to be

-- updated.

-- Frequency: <16ttz

-- Parameter size: PlatformPosition => 32 bytes

-- NOTE: we are using the term Platform_Position to refer to the dataflow

-- called Position in the IBM specification. This is to help

-- prevent confusion between data giving the platform's position

-- and data giving target positions. :

procedure ACCEPT_POSITION(PLATFORM_POSITION : in POSITION_TYPE);

-- This procedure returns the current platform position.

-- Parameter size: Platform_Position => 32 bytes

procedure SEND_POSITION(PLATFORM_POSITION : out POSITION_TYPE);

-- This is the Weapons Monitoring interface task.

task WEAPONS_MONITORING INT is

-- Frequency: 0.1Hz
-- Parameter size: Wpn History => 1K

entry ACCEPT_WPN_DATA(WPN_HISTORY : in WPN_HiST,TYPE);

-- Frequency: 0.5Hz

-- Parameter size: Targets => 1K

-- NOTE: we are not satisfied with the IBM specification's definition of

-- the Targets dataflow. It seems to be intended to give a

-- weapon controller information about the target it is currently

-- working with, yet the dataflow has a plural name. We have

-- thought that the name might imply that information might be

-- passed about a group or class of targets. If so, another entry

-- could be provided to allow for group information to supplement

-- the current entry which provides information about a single

-- target.

entry SEND_TARGETS(TARGET_ID : in TRACK ID TYPE;

TARGETS : out TARGETS_TYPE);

end WEAPONS_MONITORING_INT;

-- This is the Track Update interface task.

task TRACK_UPDATE_INT is

-- Frequency: Ns

-- Parameter size: Track_Updates => 1K

entry ACCEPT_TRACKS(TRACK_UPDATES : in TRACK_INFO_TYPE);

end TRACK_UPDATE_INT;

-- This is the Overlay Management interface section.

-- Although the IBM specification has a single dataflow called

22

J

J

m
w

m

m
J

m

w

m

m

z

g

w

J

W

-- DataRequest, this dataflow carries requests for both text data and

-- image data. We have left the name the same in both the following

-- entries, but the datafiow might as well be split into two separate

-- dataflows called Text_Requests and Image_Requests respectively.

-- Frequency: 2,Nc (¢.f. the frequency for the Text Data dataflow)

-- Parameter size: Data_Request => 100 bytes, Text_Data => 100 bytes

procedure SEND_TEXT (DATAREQUEST : in REQUEST_TYPE;

TEXT_DATA : out RAW_TEXTTYPE);

-- Frequency: Rp.Np (c.f. the frequency for the Image_Data dataflow)

-- Parameter size: Data_Request => I00 bytes, Image__Data => IM

procedure SEND_IMAGE(DATAREQUEST : in REQUEST_TYPE;

IMAGEDATA : out RAW_IMAGE_TYPE);

end DATABASE_MANAGEMENT;

-- This partition implements the Overlay Management function OM.

-- There will be one instantiation of this partition.

with OVERLAY TYPEDEFS;

use OVERLAY_TYPEDEFS;

with DATABASE_MANAGEMENT;

use DATABASE_MANAGEMENT;

partition OVERLAY_MANAGEMENT is

-- This task is used for configuring the Overlay Manager to use a particular

-- instance of the DatabaseManagement.
task CFI is

entry ASSIGN_DATABASE(DATABASE : in DATABASE_MANAGEMENT);

end CFI;

-- Procedure calls are used here to eliminate the queueing and blocking

-- of requests that are associated with the use of task entry calls.

-- Caller:Operator_Console

-- Frequency: Rp*Np

-- Parameter size:Page_Select => 50 bytes

-- Image => IM

procedure GET_IMAGE(PAGE_SELECT : in PAGE ID TYPE;

IMAGE : out IMAGE_TYPE);

-- Caller: Operator_Console

-- Frequency: 2,Nc

-- Parameter size: Info Select => 50 bytes

-- Readout =:> 50 bytes

procedure GET READOUT(INFO_SELECT : in READOUT ID TYPE;

READOUT : out READOUT TYPE);

end OVERLAY_MANAGEMENT;

23

W

-- This partition implements the Weapon Control function WC.

-- It must be polled by the Weapons Monitoring function. It

-- is intended to reside on the embedded processor of a weapon system

-- There will be multiple instantiations of this parition, each residing

-- on the embedded processor of one of the weapons systems.

-- For our simulation, one instance of this partition should be sufficient.

with WEAPON_TYPEDEFS;

use WEAPON TYPEDEFS;

partition WEAPON CONTROL is

task COMMANDS is

-- Caller: Weapons Monitoring k

-- Frequency: 1Hz

-- Parameter size: Wpn_Orders => 32 bytes

entry NEW ORDERS(WPN_ORDERS : in ORDERS_TYPE);

-- Caller: Weapons Monitoring
-- Frequency: aperiodic (used only for special situations)

-- Parameter size: Wpn_Orders => 32 bytes

entry PRIORITY_ORDERS(WPN_ORDERS : in ORDERSTYPE);
end COMMANDS;

-- Caller: Weapons Monitoring

-- Frequency: 1Hz

-- Parameter size: Wpn_Status => 32 bytes

function WPN STATUS return WPN_STATUS_ TYPE);

-- Caller: Weapons Monitoring

-- Frequency: aperiodic (when Weapons Monitoring is informed of this

-- controler)

function WPN CAPABILITIES return WPN CAP TABLE;

end WEAPONCONTROL;

J

J

w

W

J

w

z

I

w

w

with WEAPON_TYPEDEFS;

use WEAPON_TYPEDEFS;

partition WEAPON_CONTROL2 is new WEAPON_CONTROL;

with WEAPON_TYPEDEFS;

use WEAPON TYPEDEFS;

PARTITON WEAPON_CONTROL3 is new WEAPON CONROL;

==

J

-- This partition implements the Weapons Monitoring function WM.
-- There will be one instantiation of this partition.

witfi WEAPON_TYPEDEFS;

use WEAPON TYPEDEFS;

24

w

w

w

with WEAPON_CONTROL, WEAPON_CONROL2, WEAPON_CONTROL3, DATABASE_MANAGEMENT;

use WEAPON_CONTROL, WEAPON CONROL2, WEAPON CONTROL3, DATABASE_MANAGEMENT;

partition WEAPONS_MONITORING is

-- This task is used by the node to inform the Weapons Monitoring function

-- of available Weapon Control partitions as well as the system database.

task CFI is

entry ACCEPTNEWWEAPON(WEAPON : in WEAPONCONTROL);

entry REMOVE_WEAPON(WEAPON : in WEAPON_CONTROL);

entry ACCEPT_DATABASE(DATABASE : in DATABASE.MANAGEMENT);

end CFI;

-- Caller: Operator_Console

-- Frequency: Aperiodic

-- Parameter size: Wpn Select => 50 bytes

procedure ACCEPT WPN_CONFIG(WPN_SELECT : in WPN SELECT_TYPE;

OPERATOR ID : in OPERATOR ID TYPE);

-- Caller: Operator...Console

-- Frequency: >lHz

-- Parameter size: Wpn_Display => 64 bytes

procedure REPORT WPN_STATE(WPN DISPLAY : out WPN_INFO TYPE);

end WEAPONS_MONITORING;

-- This partition implements the Sensor Control function SC. This partition

-- must he polled by the TrackUpdate function when data is desired.

-- There will be multiple instatiations of this partition, each residing

-- on the embedded processor of one of the sensor systems.

-- For our simulation, one instance of this partition should be sufficient.

with TRACK TYPEDEFS;

use TRACK TYPEDEFS;

partition POLLED SENSOR CONTROL is

-- Caller: Track Update

-- Frequency: not given

-- Parameter size: Tracks => not given

procedure SENDDATA(TRACKS : out TRACKS._TYPE);

end POLLED SENSOR CONTROL;

-- This partition implements the Track Update function TU.

-- There will be one instantiation of this partition.

with TRACK TYPEDEFS;

use TRACK TYPEDEFS;

with POLLEDSENSORCONTROL, DATABASEMANAGEMENT;

25

use POLLED SENSOR_CONTROL, DATABASE_MANAGEMENT;

partition TRACK_UPDATE is

begin

-- This task is used by the node to inform the Track Update function about

-- the sensors it will be working with. Because of the semantics of AdaPT,

-- the Track_Update partition cannot be given pointers to

-- Asynchronous Sensor Control partitions, since those partitions

-- must be given a pointer to Track_Update in order to make their reports.
-- The node also uses this task to give Track Update a pointer to the

-- system database.
task CFI is

entry ACCEPT_POLLED_SENSOR(SENSOR : in POLLED_SENSOR._CONTROL;

SENSOR ID : in SENSOR_ID_TYPE);

entry REMOVE_POLLED SENSOR(SENSOR : in POLLED_.SENSORCONTROL);

entry ACCEPT ASYNCHRONOUS_SENSOR ID(SENSOR_ID : in SENSOR ID TYPE);
entry REMOVE_ASYNCHRONOUS...SENSOR ID(SENSOR ID : in SENSOR ID TYPE);

entry ACCEPT._DATABASE(DATABASE : in DATABASE._MANAGEMENT);
end CFI;

-- This is the Operator_Console interface task.

-- A task was used so that requests for track files can be interleaved
-- with updates to the master track file.

task OPERATOR_CONSOLE_INT is

-- Frequency: 0.5Hz
-- Parameter size: Track_File => 1M

entry EXPORT_TRACKFILE(TRACKFILE : out TRACKFILETYPE);
end OPERATOR CONSOLE INT;

-- Caller: Asynchronous_Sensor_Control;

-- Frequency: not given
-- Parameter size: Tracks => not given
-- Sensor => ??

procedure ACCEPTSENSORDATA(TRACKS : in TRACKSTYPE;

SENSOR ID : SENSOR ID_TYPE);

end TRACK_UPDATE;

mi
g

m

m
J

w

W

w

w

g

-- This partition implements the Sensor Control function SC. It sends its
-- data to the TrackUpdate partition as needed.

-- There will be multiple instatiations of this partition, each residing

-- on the embedded processor of one of the sensor systems.

-- For our simulation, one instance of this partition should be sufficient.

with TRACK TYPEDEFS;

26

W

_w

L_

w

w

use TRACK_TYPEDEFS;

with TRACK_UPDATE;

use TRACK_UPDATE;

partition ASYNCHRONOUS_SENSOR_CONTROL is

-- This task is used by the node to set up pointers to the Track Update

-- function.

task CFI is

entry ACCEPT_TRACK_UPDATE(UPDATER : in TRACKUPDATE);

entry ACCEPT_SENSOR_ID(SENSOR_ID : in SENSOR ID TYPE);

end CFI;

end ASYNCHRONOUS_SENSOR_CONTROL;

-- This partitionimplements the Operator Console function OC.

-- There will be multiple instantiationsof this partition,each

-- residingon one of the operators' workstations.

-- To conform to the IBM specificationwe will need 20 of these partitions.

-- The body of this partitionshould contain calls to other partitionsto

-- obtain the data needed by this function. The decision was made to have

-- this partitionactivelyseek the necessary information because of the

-- difficultiesinvolved in having all partitionscommunicating with the

-- operators keep track of the current status of all instances of this

-- partition.

with OVERLAY_TYPEDEFS, TRACK_TYPEDEFS, WEAPON_TYPEDEFS, OPERATOR_TYPEDEFS;

with OVERLAY_MANAGEMENT, TRACK_UPDATE, WEAPONS_MANAGEMENT;

use OVERLAY_TYPEDEFS, TRACK_TYPEDEFS, WEAPON_TYPEDEFS, OPERATOR_TYPEDEFS;

use OVERLAYMANAGEMENT, TRACK_UPDATE, WEAPONS_MANAGEMENT;

partition OPERATOR_CONSOLE is

-- The node uses this task to give pointers to the partitions which must

-- be called.

task CFI is

entry ACCEPT_OVERLAYER(OVERLAY_MANAGER : in OVERLAY_MANAGEMENT);

entry ACCEPT_UPDATER(UPDATER : in TRACKUPDATE);

entry ACCEPT_WPN_MONITOR(WPN MONITOR : in WEAPONS_MANAGEMENT);

entry ACCEPT_OPERATOR_ID(OPERATOR_ID : in OPERATOR ID TYPE);

end CFI;

end OPERATOR_CONSOLE;

-- This partition implements the Position Keeping function PK.

-- It is not called by anything else.

27

with POSITION_TYPEDEFS;

use POSITION_TYPEDEFS;

partition POSITION_KEEPING is

-- This task is used by the node to set up a pointer to the system

-- database.

task CFI is

entry ACCEPT_DATABASE(DATABASE : in DATABASE_MANAGEMENT);

end CFI;

end POSITION KEEPING;

IIW

g

t

-- node definitions below: --

-- with convention:

-- Partitions to be created locally

-- Partitions which must be known about

-- Nodes which must be known about or created by this node

with WEAPON_CONTROL;

use WEAPON_CONTROL;

node EMBEDDED_WEAPON_CPU is

function MYCONTROLLER return WEAPONCONTROL;

end EMBEDDED WEAPON CPU;

node body EMBEDDED._WEAPON, CPU is

CONTROLLER : WEAPON_CONTROL := new WEAPON_CONTROL'PARTITION;

function MYCONTROLLER return WEAPON_CONTROL is

begin

return CONTROLLER;

end MY_CONTROLLER;

end EMBEDDED WEAPON_CPU;

.... , =

=

U

=

g

g

W

u

with POSITIONKEEPiNG, WEAPONSMANAGEMENT;

use POSITIONKEEPING, WEAPONSMANAGEMENT;

with DATABASEMANAGEMENT, WEAPONCONTROL;

use DATABASE MANAGEMENT, WEAPONCONTROL;

with EMBEDDED WEAPON CPU;

use EMBEDDED WEAPON_CPU;

node CPUI(NUMBER_OF WEAPONS : INTEGER; DATABASE : DATABASE_MANAGEMENT) is

function MY POSITIONER return POSITION KEEPING;

28

g

i

J

function MY_WPN_MONITOR return WEAPONS_MONITORING;

end CPU1;

node body CPUI(NUMBER OF WEAPONS : INTEGER; DATABASE : DATABASE_MANAGEMENT) is

POSITIONER : POSITIONKEEPING := n_ew POSITION_KEEPING'PARTITION;

WEAPON_MONITOR : WEAPONSMONITORING := new WEAPONSMONITORING'PARTITION;
EMBEDDED_WEAPONS : array[1..NUMBER OF WEAPONS] of EMBEDDED_WEAPON_CPU

:= (others => EMBEDDED_WEAPON_CPU'NODE);

function MY_POSITIONER return POSITION_KEEPING is

begin
return POSITIONER;

end MY POSITIONER;

function MY_WPN_MONITOR return WEAPONS_blONITORING is

begin

return WEAPON_MONITOR;
end MY_WPN_MONITOR;

begin

-- Set up the Weapons_Monitoring partition with its initial values.
PASSWEAPONS_CONTROLLERS:

for I in 1..NUMBER OF WEAPONS loop
WEAPON_MONITOR.CFI.ACCEPT_WEAPON

(EMBEDDED_WEAPONS[I] MY_CONTROLLER);

end loop PASSWEAPONS_CONTROLLERS;
WEAPON_MONITOR.CFI.ACCEPT_DATABASE

(PROC4.SYSTEM DATABASE);
end CPUI;

with ASYNCHRONOUS_SENSOR_CONTROL;

use ASYNCHRONOUS_SENSOR_CONTROL;

with TRACK_UPDATE;

use TRACK_UPDATE;

node ASYNCHRONOUS SENSOR_CPU(UPDATER : TRACK_UPDATE) is

function MY_SENSOR return SENSOR;

end ASYNCHRONOUS SENSOR_CPU;

node body ASYNCHRONOUS_SENSOR_CPU(UPDATER : TRACKUPDATE) is

SENSOR: ASYNCHRONOUS_SENSORCONTROL
:= new ASYNCHRONOUS_SENS-()-R_CONTROL'PARTITION;

function MY SENSOR return SENSOR is

begin
return SENSOR;

29

end MY_SENSOR;

begin
SENSOR.CFI.ACCEPT_UPDATER(UPDATER);

end ASYNCHRONOUS_SENSOR_CPU;

with POLLED_SENSOR_CONTROL;

use POLLED_SENSOR_CONTROL;

node POLLED SENSOR._CPU is

function MYSENSOR return POLLED_SENSORCONTROL;

end POLLEDSENSOR;

node body POLLED_SENSOR_CPU is

SENSOR : POLLED_SENSORCONTROL := new POLLED_SENSOR CONTROL'PARTITION;

function MY_SENSOR return POLLED_SENSOR_CONTROL is

begin
return SENSOR;

end MY_SENSOR;

end POLLED SENSOR_CPU;

--updated through here

m

w

with TRACK_TYPEDEFS;

use TRACK_TYPEDEFS;

with TRACKUPDATE;

use TRACKUPDATE;

with ASYNCHRONOUS_SENSOR_CONTROL, POLLED_SENSOR_CONTROL,

DATABASEMANAGEMENT;

use ASYNCHRONOUSSENSORCONTROL, POLLED_SENSOR_CONTROL,

DATABASEMANAGEMENT;

with ASYNCHRONOUS_SENSOR_CPU, POLLED_SENSOR_CPU;

use ASYNCHRONOUS SENSOR_CPU, POLLED_SENSOR_CPU;

node CPU2(NUM_INITIATORS, NUM_POLLED : INTEGER;

DATABASE : DATABASE_MANAGEMENT) is

function MY_UPDATER return TRACKUPDATE;

end CPU2;

node body CPU2(NUM INITIATORS, NUM_POLLED : INTEGER;

DATABASE : DATABASE_MANAGEMENT) is

UPDATER : TRACK_UPDATE := new TRACKUPDATE'PARTITION;

INITIATORS : array[1..NUM_INITIATORS] of ASYNCHRONOUS_SENSOR_CPU

:= (others => new ASYNCHRONOUS_SENSOR_CPU'NODE);

POLLED_SENSOR_SYSTEMS : array[1..NUM_POLLED] of POLLED_SENSOR_CPU

:= (others => new POLLED_SENSOR_CPU'NODE);

3O

wm_

B

iP

w

ID : SENSOR_ID;

ASYNCHRONOUS_SENSOR : ASYNCHRONOUS_SENSOR_CONTROL

POLLED_SENSOR : POLLED_SENSOR_CONTROL;

function MY_UPDATER return TRACK_UPDATE is

begin
return UPDATER;

end MY_UPDATER;

begin
UPDATER.CFI.ACCEPT_DATABASE(DATABASE);

INITIATORSETUP:
for I in 1..NUM_INITIATORS loop

ASYNCHRONOUS_SENSOR := [NITIATORS[IJ.MY_SENSOR;

ASYNCHRONOUS_SENSOR.CFI.ACCEPT_ID(I D);

ASYNCHRONOUS_SENSOR.CFI.ACCEPT_UPDATER(UPDATER);

UPDATER.CFI.ACCEPT ASYNCHRONOUS_SENSOR_ID(ID);

ID := TRACK_TYPEDEFS.NEXT_ID(ID);

end loop INITIATOR. SETUP;
POLLED_SETUP:
for I in I..NUM_POLLED loop

POLLED_SENSOR := POLLED_SENSOR SYSTEMS[IJ.MY SENSOR;

POLLED_SENSOR.CFI.ACCEPT_ID(ID);

POLLED_SENSOR.CFI.ACCEPT_UPDATER(UPDATER);

UPDATER.CFI.ACCEPT_POLLED_SENSOR(POLLED_SENSOR,ID);

ID := TRACK_TYPEDEFS.NEXT ID(!D);

end loop POLLED_SETUP;

end CPU2;

v

with OVERLAY_MANAGEMENT;

use OVERLAY_MANAGEMENT;
with DATABASE_MANAGEMENT;

use DATABASE_MAGAGEMENT;

node CPU3(DATABASE : DATABASE_MANAGEMENT) is

function MY_OVERLAYER return OVERLAY_MANAGEMENT;
end CPU3;

node body CPU3(DATABASE : DATABASE_MANAGEMENT) is

OVERLAYER : OVERLAYMANAGEMENT := new OVERLAY_MANAGEMENT'PARTITION;

function MY_OVERLAYER return OVERLAY_IVIANAGEMENT is

begin
return OVERLAYER;

end MY_OVERLAYER;

begin

31

OVERLAYER.CFI.ACCEPT_DATABASE(DATABASE);

end CPU3;

g

J

with OPERATOR_CONSOLE;

use OPERATOR_CONSOLE;
node OPERATOR_WORKSTATION is

function MY_CONSOLE return OPERATOR_CONSOLE:

end OPERATOR_WORKSTATION;

node body OPERATOR_WORKSTATION is
CONSOLE : OPERATOR_CONSOLE := OPERATOR_CONSOLE'PARTITION;

function MY_CONSOLE return OPERATOR_CONSOLE is

begin
return CONSOLE;

end MY_CONSOLE;
end OPERATOR_WORKSTATION;

g

g

U

with DATABASE_MANAGEMENT;

use DATABASE_MANAGEMENT;

with TRACK_UPDATE, WEAPONS_MONITORiNG, OVERLAY_MANAGEMENT, OPERATOR_CONSOLE;

use TRACK_UPDATE, WEAPONS_MONITORiNG, OVERLAY_MANAGEMENT, OPERATOR_CONSOLE:

with cPu1, cPu2, cPu3, OPERATOR_WORKSTATION; u
-use CPU1, CPU2, CPU3, OPERATORWORKSTATION;
node CPU4 is

pragma DISTINGUISHED(CPU4);
end;

with OPERATOR_TYPEDEFS;

node body CPU4 is "=
DATABASE : DATABASE_MANAGEMENT := new DATABASE_MANAGEMENT'PARTITION);

PROC2 :CPU2 := new CPU2'NODE(1,1,DATABASE); =

PROC1 : CPU1 := new CPUI'NODE(2,DATABASE); u
PROC3 : CPU3 := new CPU3'NODE(DATABASE);

OPERATORS : array[1.20] of OPERATOR_WORKSTATION _--_

:= (others => new OPERATOR_WORKSTATION'NODE); w

UPDATER : TRACK_UPDATE;
OVERLAYER : OVERLAY_MANAGEMENT;

WPN MONITOR : WEAPONS MONITORING;
CONSOLE : OPERATOR_CONSOLE;

ID : OPERATOR_ID;

32

J

w

begin
UPDATER := PROC2.MY_UPDATER:

OVERLAYER := PROCS.MY_OVERLAYER;

WPN MONITOR := PROC1.MY_WPN_MONITOR;

CONSOLE : OPERATOR_CONSOLEI

OVERLAYER.CFI.ACCEPT_DATABASE(DATABASE);

CONSOLE_SETUP:

for I in 1..20 loop

CONSOLE :-- OPERATORS[I].MY_CONSOLE;

CONSOLE.CFI.ACCEPT_DATABASE(DATABASE);

CONSOLE.CFI.ACCEPT_UPDATER(U PDATER);

CONSOLE.CFI.ACCEPT_WPN_MONITOR(WPN_MONITOR);

CONSOLE.CFI.ACCEPT_OPERATOR ID(ID);

ID := OPERATOR_TYPEDEFS.NEXT_ID(ID);

end loop CONSOLE_SETUP;

end CPU4;

33

Hi

miB

W

_P

lIB

WRg

IBm

